Propositional logic

[Edit]
[EN/CZ]

Annotation

Operation Notation Sentece representaion
Negation ¬\negA ; A’ not A
Conjuncion A \land B A and B
Disjunction A \lor B A or B
Implication A     \implies B Impossible A without B
Equivalence A     \iff B If A, then B

Table of values

A B ¬\negA A \land B A \lor B A \Rightarrow B A \Leftrightarrow B
1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1
    Negation Conjuncion Disjunction Implication Equivalence

Negation

Expression Negation of expression
A \land B ¬\negA \lor ¬\negB
A \lor B ¬\negA \land ¬\negB
A     \iff B (A \lor B) \land (¬\negA \lor ¬\negB)
A     \implies B A \land ¬\negB